Mechanisms of Hydrolysis of (Trimethylsilyl)methanesulfonyl Chloride. Sulfene-Enamine Reactions in Water¹

James F. King* and Joe Y. L. Lam

Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

Received January 19, 1993

Kinetic, product analysis, and deuteration experiments are consistent with the following mechanisms of hydrolysis of (trimethylsilyl)methanesulfonyl chloride (1) (in 0.01 M KCl at 1 °C): (a) $pH \le 10.0$, attack of water at silicon to form sulfene (5) which is trapped by water to give methanesulfonate anion (3), (b) $pH \ge 10.0$, attack of hydroxide anion (i) at silicon to yield sulfene (5) and (ii) at an α -hydrogen to form (trimethylsilyl)sulfene (4), in each case followed by trapping of the sulfene to give either methanesulfonate (3) or (trimethylsilyl)methanesulfonate (6) salts. Aqueous potassium fluoride catalyzes the hydrolysis of 1 with formation of the methanesulfonate 3, evidently by way of silicophilic attack of fluoride anion on 1 with formation of sulfene (5). Reaction of 1 with an enamine 7 in water (at pH 8 or 9), with or without fluoride, gives two characteristic sulfene–enamine products, (i) the four-membered cycloadduct 8 and (ii) the methylsulfonyl aldehyde 9. The same or related products are also obtained from methanesulfonyl, 2-propanesulfonyl, and phenylmethanesulfonyl chlorides and enamines in water (at pH 9). Hydrolysis of 1 is also catalyzed by aniline or triethylamine evidently giving 5.

(Trimethylsilyl)methanesulfonyl chloride (1), the simplest α -silylalkanesulfonyl chloride, was first prepared from the reaction of tetramethylsilane with sulfuryl chloride by Cooper,³ who recorded that it (a) hydrolyzed to give hexamethyldisiloxane (2) and methanesulfonate anion (3) and (b) reacted with dry ammonia in toluene to form (trimethylsilyl)methanesulfonamide. Subsequently, Baukov et al.⁴ reported that 1 was also prepared from (trimethylsilyl)methyl chloride by reaction of the Grignard reagent with sulfur dioxide followed by chlorination. They further noted that 1 was readily converted by triethylamine in the presence of alcohols or primary or secondary amines into the (trimethylsilyl)methanesulfonic esters or amides, or, with enamines, into the four-membered ring cycloadduct of the enamine and (trimethylsilyl)sulfene (4). More recently, Block and co-workers⁵ provided two additional routes to 1 and showed that it and related compounds undergo a useful fluorodesilylation with cesium fluoride in dry acetonitrile exemplified by the formation of sulfene (5) from 1.

In the context of our recent study of the mechanisms

(1) Organic Sulfur Mechanisms. 37. Part 36, see: ref 2. Presented in part at the Third International Conference on Heteroatom Chemistry, Riccione, Italy, June 1992.

(2) King, J. F.; Lam, J. Y. L.; Ferrazzi, G. J. Org. Chem. 1993, 58, 1128-1135.

of hydrolysis of alkanesulfonyl chlorides^{2,6} we decided to look at the mechanism of the hydrolysis of 1 to obtain a clearer picture of the influence of the α -trimethylsilyl group on sulfonyl chloride reactivity. This paper describes our results.

Results and Discussion

Materials, Kinetics, and Products of Hydrolysis. (Trimethylsilyl)methanesulfonyl chloride (1) was prepared from (trimethylsilyl)methyl chloride by the sequence $Me_3SiCH_2Cl \rightarrow Me_3SiCH_2MgCl \rightarrow (Me_3SiCH_2SO_2)_2Mg$ \rightarrow 1, as outlined by Baukov et al.^{4a} The product so obtained showed the same boiling and melting points and refractive index as those reported^{3,4a} and ¹H and ¹³C NMR spectra in full accord with 1; reaction of 1 with ammonia gave $Me_3SiCH_2SO_2NH_2$ with the same melting point as that reported by Cooper.³

The rate of hydrolysis of 1, though much too fast at 25 °C for our pH-stat apparatus, could be followed with some difficulty at 1.0 °C (in 0.01 M KCl). The rates so obtained, though approximate, were in accord with pseudo-first-order decomposition of 1 in water over the pH range 4–11; the resulting pH-rate profile is shown in Figure 1 (solid line and circles). Variation of the concentration of potassium chloride from 0.01 to 0.03 M (at pH 8.0) had no effect on k_{obsd} values within experimental uncertainty.

The products isolated at pH 6.0 (at the same concentrations as the rate measurements) were hexamethyldisiloxane (2) and the methanesulfonate salt (3), as previously noted.³ In dilute sodium hydroxide at pH 10.0 and 11.0 the water-soluble products were found to be the methanesulfonate and (trimethylsilyl)methanesulfonate salts (3 and 6) in the ratios 78:22 and 69:31, respectively. In D₂O at (a) pD 3.5 and (b) 11.4, the products are, respectively, (a) CH₂DSO₃⁻ and (b) a mixture of CH₂DSO₃⁻ and Me₃SiCHDSO₃⁻.

The Mechanisms of Hydrolysis. These observations are consistent with a rate law as in eq 1, with $k_w 2.1 \times 10^{-2}$

⁽³⁾ Cooper, G. D. J. Org. Chem. 1956, 21, 1214-1216.

^{(4) (}a) Baukov, Yu. I.; Shipov, A. G.; Gorshkova, L. V.; Savost'yanova,
I. A.; Kisin, A. V. Zh. Obshch. Khim. 1977, 47, 1677-1678 (Engl. trans.,
1538-1539). (b) Shipov, A. G.; Kisin, A. V.; Baukov, Yu. I. Zh. Obshch.
Khim. 1979, 49, 1170 (Engl. trans., 1022).

^{(5) (}a) Block, E.; Aslam, M. Tetrahedron Lett. 1982, 23, 4203-4206.
(b) Block, E.; Wall, A. Tetrahedron Lett. 1985, 26 1425-1428. (c) Block, E.; Wall, A. J. Org. Chem. 1987, 52, 809-818. (d) Block, E.; Schwan, A.; Dixon, D. A. J. Am. Chem. Soc. 1992, 114, 3492-3499.

⁽⁶⁾ King, J. F.; Lam, J. Y. L.; Skonieczny, S. J. Am. Chem. Soc. 1992, 114, 1743-1749.

Figure 1. pH-rate profiles (at 1.0 °C, $\mu = 0.01$ M with KCl) for the hydrolysis of (trimethylsilyl)methanesulfonyl chloride (1) (circles) (in 0.01 M KCl) and in the presence of KF (triangles) (total added KF 5×10^{-5} M). The points are experimental; the line through the circles is calculated from eq 1 with $k_w = 2.1 \times 10^{-2} \text{ s}^{-1}$ and $k_{\text{OH}} = 1.7 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$. The line through the triangles is given by eq 2 with $k_{\text{N}} = 4.1 \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ and [F⁻] = 5×10^{-5} M. The error bars correspond to an estimated error in k_{obsd} values of $\pm 10\%$.

 s^{-1} , $k_{OH} 1.7 \times 10^3 M^{-1} s^{-1}$; from these we may deduce that

$$k_{\rm obsd} = k_{\rm w} + k_{\rm OH} [\rm OH^{-}]$$
 (1)

 pH_i is 10.0, where pH_i is defined⁷ as the pH at which the water- and hydroxide-promoted reactions have the same rate. For the pH-independent reaction (i.e., pH distinctly below pH_i) these results may be simply interpreted on the basis of attack by water on the silicon with formation of sulfene (5), which is then trapped by water to give methanesulfonate anion. At pH's well above pH_i (e.g., \geq 11) hydroxide clearly attacks 1 in two ways: (a) chiefly by reaction at silicon to form sulfene (2) much like the reaction of water and (b), the minor process, attack of hydroxide at an α -hydrogen to form (trimethylsilyl)sulfene (4); in each case the sulfene is trapped to form the corresponding sulfonate salt (3 or 6). The measured rate constant k_{OH} is therefore the sum of two specific rates. $k_{\text{SOH}} = 1.1 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ for the attack at silicon yielding 5 and $k_{\rm EOH} = 6 \times 10^2 \,{\rm M}^{-1} \,{\rm s}^{-1}$ for the elimination to form 4; these parameters predict the product ratios, 3:6, of 82: 18 and 68:32 for the reactions at pH 10.0 and 11.0, respectively, in reasonable accord with the yields quoted above. Scheme I summarizes this picture.⁸

Inspection of the deuterium-labeling results permits the exclusion of two related pathways shown by eqs 2 and 3. Reaction by eq 2 if carried out in D_2O would yield CH_2DSO_2Cl , which with OD^- is known⁶ to give a mixture in which $CHD_2SO_3^-$ predominates. Similarly, any reaction

via eq 3 in D₂O would require that the initially formed Me₃SiCHDSO₃⁻ also lead to CHD₂SO₃⁻. There is no sign (<2%) of any CHD₂SO₃⁻ in the reaction product, and hence, these pathways are not significant in the reaction of 1 with hydroxide.

$$HO^- + Me_3SiCH_2SO_2Cl \rightarrow [^CCH_2SO_2Cl] \rightarrow CH_3SO_2Cl \rightarrow CH_3SO_3^- (2)$$

$$\mathrm{HO}^{-} + \mathrm{Me}_{3}\mathrm{SiCH}_{2}\mathrm{SO}_{3}^{-} \rightarrow [^{-}\mathrm{CH}_{2}\mathrm{SO}_{3}^{-}] \rightarrow \mathrm{CH}_{3}\mathrm{SO}_{3}^{-} (3)$$

When we compare these reactions with those of the simple alkanesulfonyl chlorides it is evident that the α -trimethylsilyl group has a profound effect. The reaction of alkanesulfonyl chlorides with water is (a) much slower and is (b) an exclusive attack at the sulfonyl sulfur in a direct S_N2 -S process; the reaction of hydroxide is an elimination of HCl to form the sulfene. With 1, on the other hand, at low pH the silicophilic attack of water is sufficiently fast that no sign of the S_N2 -S product (Me₃-SiCH₂SO₃H) is seen. In the reaction of 1 with hydroxide the silicophilic attack to give 5 is the major reaction, and the elimination to form (trimethylsilyl)sulfene (4) is only a minor process.

Reactions of 1 and Other Sulfonyl Chlorides with Enamines in Water. To confirm the formation of sulfene (5) in the water-promoted reaction, 1 was treated with an enamine (7) in water (containing $\sim 20\%$ DME) at pH 8. As may be seen in Scheme II the major product of the reaction is the sulfene-enamine adduct 8, first obtained by Opitz and Adolph⁹ from methanesulfonvl chloride with 7 and triethylamine in ether. Two other sulfonyl-containing products were also observed: (a) 1-(methylsulfonyl)pyrrolidine (10) perhaps from trapping of sulfene (2) with pyrrolidine resulting from hydrolysis of 7 (or 12) and (b) the α -methylsulfonyl aldehyde 9. Formation of 9 is readily accounted for if one assumes that the sulfeneenamine reaction proceeds via the zwitterionic intermediate 11, which either undergoes cyclization to 8 or protonation to 12 which is subsequently hydrolyzed to 9.

⁽⁷⁾ King, J. F.; Rathore, R.; Lam, J. Y. L.; Guo, Z. R.; Klassen, D. F. J. Am. Chem. Soc. 1992, 114, 3028–3033.

⁽⁸⁾ The assumption made in this scheme is that the initially formed trimethylsilanol (Me₃SiOH) proceeds directly to form hexamethyldisiloxane, but it is also conceivable that 5 might arise by the action of Me₃SiOH on 1 (up to 50% of the total reaction $1 \rightarrow 5$). Similarly, it is also possible that the reaction promoted by hydroxide is partially effected by Me₃SiOH or Me₃SiO⁻. Though it is not easy with the available evidence to exclude completely the participation of trimethylsilanol and its conjugate base in these reactions, we are inclined to regard their contribution as small on the following grounds: (a) given that the initial concentration of 1 is 5.5×10^{-4} M or less, the concentration of Me₃SiOH or M

⁽⁹⁾ Opitz, G.; Adolph, H. Angew. Chem., Int. Ed. Engl. 1962, 1, 113. Opitz, G.; Schempp, H.; Adolph, H. Liebigs Ann. Chem. 1965, 684, 92– 102.

It has long been regarded¹⁰ as likely that sulfene–enamine additions proceed in nonpolar solvents via a zwitterionic intermediate like 11; such an intermediate would be even more likely in the highly polar medium used in the present work.

Water has not been the usual solvent for sulfeneenamine cyclizations, and it was of interest to see what extent the previously studied reactions might be altered by being carried out in aqueous medium. It was found that the reactions of methanesulfonyl chloride with 7 in water (containing about 20% DME) at pH 9 gave comparable yields of the same products, specifically, 8, 9, and 10, in, respectively, 40%, 16%, and 32% yields. The generality of the sulfene-enamine reaction in water is shown by the formation of the following products from the reactions of sulfonyl chlorides with enamines: (a) phenylmethanesulfonyl chloride with 7, 13a (59%), and

14a (10%); (b) 2-propanesulfonyl chloride with 7, 13b (6%), and 14b (28%); (c) methanesulfonyl chloride with 1-(N-pyrrolidino)cyclohexene, 15 (10%), and 16a (26%); (d) phenylmethanesulfonyl chloride with 1-(N-pyrrolid-ino)cyclohexene, 16b (39%).

Reactions with Other Added Nucleophiles. (a) Fluoride Anion. Recalling Block and Aslam's observation of the rapid formation of sulfene (5) from 1 with cesium fluoride in dry acetonitrile,^{5a} we examined hydrolysis of

Figure 2. Variation of k_{obsd} for the hydrolysis of (trimethylsilyl)methanesulfonyl chloride (1) with the concentration of fluoride anion at pH 8 at 1.0 °C. The points are experimental; the line is that of the least-squares fit: $k_{obsd} = (4.24 \times 10^{-2})$ [F⁻] + (2.06 × 10⁻²).

1 in the presence of potassium fluoride. As may be seen from Figure 1 (broken line and triangles) even 5×10^{-5} M KF shows a distinct catalytic effect. At pH 8.0 a linear dependence of k_{obsd} on the concentration of fluoride ion was found (see Figure 2); these results point to a rate law as in eq 4 with $k_{\rm F} = 4.1 \times 10^2$ M⁻¹ s⁻¹ (at 1 °C). The pro-

$$k_{\text{obsd}} = k_{\text{w}} + k_{\text{OH}}[\text{OH}^-] + k_{\text{F}}[\text{F}^-]$$
(4)

ducts extractable with organic solvents from reaction of 1 and aqueous KF (0.01 M) at 0 °C showed NMR spectra indicating the presence of trimethylsilyl fluoride and hexamethyldisiloxane, along with a trace (<1%) of methanesulfonyl fluoride. In a reaction at pH 11 with 0.01 M KF the water-soluble product was found to consist almost entirely of CH₃SO₃⁻ (3) (>99%) with an estimated 0.3% of Me₃SiCH₂SO₃⁻ (6). Aqueous KF (0.1 M) at pH 9 with 1 in the presence of the enamine 7 gave 8, 9, and 10 in, respectively, 46%, 9%, and 28% yields, again in excellent accord with formation of sulfene (5).

(b) Aniline. With aniline (at pH 8.0 and 1.0 °C) a weak catalytic effect corresponding to $k_{\rm N} = 2.2 \pm 0.2$ M⁻¹

⁽¹⁰⁾ Paquette, L.; Rosen, M. J. Am. Chem. Soc. 1967, 89, 4102-4112; Tetrahedron Lett. 1967, 703-707. Opitz, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 107-123.

 s^{-1} was found. The products obtained under the conditions of the rate measurements were methanesulfonanilide $(MeSO_2NHPh, 6.3\%)$ and the methanesulfonate salt (3) with no sign of any (trimethylsilyl)methanesulfonanilide $(Me_3SiCH_2SO_2NHPh)$ or the (trimethylsilyl)methanesulfonate salt (6). The absence of the (trimethylsilyl)methanesulfonate derivatives in the product clearly excludes any (a) direct nucleophilic attack of aniline on the sulfonyl sulfur atom¹¹ or (b) formation of (trimethylsilyl)sulfene (4). This in turn points to attack of either aniline itself or of water with the assistance of aniline at the silicon to give sulfene (5) which is then trapped by aniline or water. The trapping ratio, $k_{\rm TN}/k_{\rm TW}$, for aniline vs water estimated from the above yield of MeSO₂NHPh is roughly 3.4 (± 0.3), in agreement with the value of 3.2 determined from more extensive experiments with aniline and methanesulfonyl chloride in water.¹²

(c) Triethylamine. We have also briefly looked at the hydrolysis of 1 in the presence of triethylamine and observed a catalytic effect in rate measurements at pH 8 corresponding to a $k_{\rm N}$ value for Et₃N of 1.2×10^2 M⁻¹ s⁻¹. Upon examination of the products at pH 8 with the concentration of the free amine estimated to be 2.0×10^{-5} M, the water-soluble product showed the presence of only $CH_3SO_3^{-}(3)$ with no sign of any $Me_3SiCH_2SO_3^{-}(6)$. Since at this concentration of $Et_3N \ge 50\%$ of the product would be expected to arise from the reaction of 1 with the amine, it would appear that the amine does not react with 1 to form trimethylsilylsulfene (4) but rather (like aniline) either (a) attacks the silicon directly with formation of 5 or (b) acts as a general base aiding the attack of water on 1 at silicon to form 5. It has been reported by Shipov et al.^{4b} that 1 reacts with Et_3N in *ether* to give 4. In our view it is less likely that change in solvent would lead to a complete switch in site of attack of the base from hydrogen to silicon and more probable that triethylamine is acting as a general base assisting attack of water on 1.

Experimental Section

General. ¹H NMR spectra were obtained with a Varian XL-200 or Gemini-200 spectrometer and ¹³C NMR spectra with either a Varian XL-300 or the Gemini instrument. Mass spectra were run on a Finnigan MAT 8230 instrument using electron impact except where otherwise noted and infrared spectra on a Bruker IFS 32 FTIR spectrometer using NaCl plates for neat liquids or KBr pellets for solid samples. Melting points are uncorrected. 1,2-Dimethoxyethane (DME) was dried by distillation from CaH₂. Standard sodium hydroxide solution (0.1 M. Fisher) was used as supplied or diluted appropriately. Unless otherwise stated, other solvents and reagents were reagent-grade commercial materials used as supplied. Solvent evaporation after extraction was carried out under reduced pressure using a Büchi Rotovap apparatus. The following parameters at 1.0 °C were estimated by extrapolation from values given in the sources cited: $K_{\rm w} 1.34 \times 10^{-15}$ (ref 13), pK_a 's of $PhNH_2$ 5.04, and Et_3N 11.29.¹⁴ Further experimental details are given elsewhere.¹²

(Trimethylsilyl)methanesulfonyl Chloride (cf. ref 4a). A 20-mL portion of a solution of Me₃SiCH₂Cl (5.0 g, 0.04 mol) and anhydrous ether (50 mL) was added to magnesium (Fisher "coarse", 1.1 g, 0.045 mol) with stirring in a 1-L three-necked flask under a stream of dry N_2 . The reaction started within 15 min. More ether (100 mL) was added to the flask through the condenser and the rest of the Me₃SiCH₂Cl-ether solution then added dropwise to give a dark gray solution of Me₃SiCH₂MgCl. More ether (150 mL) was added to the mixture which was then cooled in an ice bath and SO_2 bubbled into the mixture vigorously for 20 min. The solvent was removed, initially on the Rotovap and then on the vacuum pump for 3 h. The residue was dissolved in CH₂Cl₂ (150 mL) and a solution of Cl₂ in CH₂Cl₂ then added dropwise until a yellow color just appeared. The mixture was filtered and the solvent evaporated; the residue was distilled under reduced pressure to give Me₃SiCH₂SO₂Cl (6.4 g, 84 % yield) as a colorless oil: bp 100 °C (0.01 Torr); mp 18 °C (lit.4a mp 18-19 °C); n^{20} _D 1.4700 (lit.^{3,4a} n^{20} _D 1.4680); IR ν_{max} 760, 783, 857, 1175, 1258, 1366 cm⁻¹; ¹H NMR δ 0.29 (s, 9H), 3.60 (s, 2H); ¹³C NMR δ-1.2, 59.9; ²⁹Si NMR δ 3.99.

Derivatives. (a) (Trimethylsilyl)methanesulfonanilide. A solution of aniline (0.4 g, 4 mmol) and Et₃N (0.5 g, 5 mmol) in CH₂Cl₂ (20 mL) was added to a stirred solution of Me₃Si-CH₂SO₂Cl (0.5 g, 2.7 mmol) in CH₂Cl₂ (25 mL) and stirring continued for 30 min. The reaction mixture was then washed (aqueous HCl) and dried (MgSO₄) and the solvent evaporated to give the sulfonanilide (0.55 g, 84.6% yield) as a yellow viscous oil. A sample was distilled in the cold finger apparatus to give a pale yellow oil: bp 160 °C (0.05 Torr); IR v_{max} 1150, 1254 cm⁻¹; ¹H NMR δ 0.22 (s, 9H), 2.73 (s, 2H), 7.08 (broad, H, NH), 7.25 (m, 5H); ¹³C NMR δ -0.9, 42.9, 120.7, 125.3, 130.2, 138.2; exact mass calcd for C₁₀H₁₇NO₂SSi 243.0749, found 243.0755. (b) (Trimethylsilyl)methanesulfonamide was prepared as described³ from NH₃ gas and Me₃SiCH₂SO₂Cl (0.5 g, 2.7 mmol) in CH₂Cl₂, in 67% yield: mp 120-122 °C (ethanol-pentane) (lit.³ mp 122–123 °C; IR ν_{max} 1148, 1310 cm⁻¹; ¹H NMR δ 0.23 (s, 9H), 2.89 (s. 2H), 4.83 (broad, 2H, NH); ¹³C NMR δ -1.0, 48.1; exact mass calcd for C₄H₁₃SO₂SiN 167.0436, found 167.0440.

Authentic Specimens. (a) Fluorotrimethylsilane. A solution of Me₃SiCl (5.0 g, 0.05 mol) and aqueous HF (49%, 2.0 g) in a 100-mL round-bottomed flask connected to a cold trap (0°C) was stirred for 15 min. The colorless liquid (1.0g) collected in the trap contained a mixture of Me₃SiF and Me₃SiCl (¹H NMR showed the ratio 13:7). Me₃SiF (14.4% yield): ¹H NMR δ 0.21 (d, 9H, J = 7.4 Hz); ¹³C NMR δ 0.05 (d, J = 15 Hz). Me₃SiCl (7.8% yield): ¹H NMR δ 0.41 (s, 9H); ¹³C NMR δ 3.2. (b) 1-(Methylsulfonyl)pyrrolidine (10). A solution of pyrrolidine (0.5 g, 7.0 mmol) and NEt₃ (0.6 g, 6 mmol) in CH₂Cl₂ (10 mL) was added to a stirred solution of methanesulfonyl chloride (0.5 , 4 mmol) in CH_2Cl_2 (40 mL) and stirring continued for 10 min. The reaction mixture was washed (aqueous HCl) and dried (MgSO₄) and the solvent evaporated; the residue was recrystallized (ethanol) to give 10 (0.5 g, 77% yield) as colorless crystals: mp 68–69 °C (lit.¹⁵ mp 69–70 °C); IR ν_{max} 1148, 1323 cm⁻¹; ¹H NMR δ 1.95 (t, 4H), 2.83 (s, 3H), 3.33 (t, 4H); ¹³C NMR δ 25.6, 34.4 47.8. (c) 1-(2-Propylsulfonyl)pyrrolidine. The same procedure with 2-propanesulfonyl chloride gave (2-propanesulfonyl)pyrrolidide as a colorless oil (97% yield): IR ν_{max} 1138, 1323 cm⁻¹; ¹H NMR δ 1.36 (d, 6H), 1.94 (t, 4H), 3.25 (septet, 1H), 3.40 (t, 4H); 13 C NMR δ 16.4, 25.8, 48.0, 52.7. Similarly prepared was (d) 1-(Phenylmethylsulfonyl)pyrrolidine (61% yield) as a white solid: mp 76-77 °C (ethanol) (lit.¹⁶ mp 75-76 °C and 93–94 °C); IR ν_{max} 1150, 1329 cm⁻¹; ¹H NMR δ 1.80 (t, 4H), 3.15 (t, 4H), 4.25 (s, 2H), 7.37 (m, 5H); ¹³C NMR δ 25.7, 48.0, 56.2, 128.5, 128.6, 129.4, 130.5. (e) 2.2-Dimethyl-3-pyrrolidinothietane 1,1-dioxide (8) was prepared as described⁹ from methanesulfonyl chloride (0.5 g, 4.4 mmol), 7 (0.6 g, 4.8 mmol), and NEt₃ (0.9 g, 9 mmol) in ether (50 mL) in 79% yield: mp 66 °C (lit.⁹ mp 67–68 °C); IR ν_{max} 1107, 1302 cm⁻¹; ¹H NMR δ 1.51 (s, 3H), 1.56 (s, 3H), 1.79 (m, 4H), 2.45 (m, 4H), 2.79 (t, 1H), 3.91 (d, 2H); ¹³C NMR δ 17.0, 21.6, 23.1, 53.2, 59.0, 64.4, 80.1. (f) 2,2,4,4-Tetramethyl-3-pyrrolidinothietane 1,1-dioxide (13b) was prepared as described $^{17}\,\rm from\,2$ -propanesulfonyl chloride (0.5 g, 3.5 mmol), 7 (0.53 g, 4.2 mmol), and NEt₃ (0.75 g, 6.9 mmol) in acetonitrile (100 mL) at -40 °C in 80% yield: mp 113-115 °C (lit.¹⁷ mp 111 °C); IR ν_{max} 1096, 1293 cm⁻¹; ¹H NMR δ 1.45 (s, 6H),

⁽¹¹⁾ Direct nucleophilic attack of aniline on the sulfonyl sulfur has been observed in the reaction of aniline with methanesulfonyl chloride in water.¹²

⁽¹²⁾ Lam, J. Y. L. Ph.D. Thesis, University of Western Ontario, 1992. (13) Harned, H. S.; Robinson, R. A. Trans. Faraday Soc. 1940, 36, 973-978

⁽¹⁴⁾ Perrin, D. D. In Dissociation Constants of Organic Bases in Aqueous Solution; Butterworths: London, 1965.

⁽¹⁵⁾ Sacco, L. J., Jr.; Anthony, P. Z.; Borgen, D. R.; Ginger, L. G. J. Am. Chem. Soc. 1954, 76, 303–305.
 (16) Looker, J. J. J. Org. Chem. 1966, 31, 2973–2976.

⁽¹⁷⁾ Opitz, G.; Rieth, K. Tetrahedron Lett. 1965, 3977-3978.

1.59 (s, 6H), 1.75 (m, 4H), 2.37 (s, 1H), 2.41 (m, 4H); ¹³C NMR δ 18.3, 23.1, 23.8, 54.2, 72.4, 77.3. (g) 1-Pyrrolidino-7-thiabicyclo[4.2.0]octane 7,7-dioxide (15) was prepared as described¹⁸ from methanesulfonyl chloride (2.0 g, 17.5 mmol), 1-(Npyrrolidino)cyclohexene (2.64 g, 17.5 mmol), and NEt_3 (2.65 g, 26.2 mmol) in benzene (300 mL) at 0 °C in 75% yield: mp 43-44 °C (lit.¹⁸ mp 42–43 °C); IR ν_{max} 1312, 1134 cm⁻¹; ¹H NMR δ 1.4– 2.0 (m, 10H), 2.13–2.27 (m, 2H), 2.54–2.64 (m, 2H), 2.72–2.83 (m, 2H), 3.57 (d, 1H), 4.15 (d, 1H), 4.47 (t, 1H); ¹³C NMR δ 18.4, 19.6, 20.0, 23.9, 30.0, 47.3, 49.3, 68.6, 76.4. (h) 4,4-Dimethyl-2-phenyl-3-pyrrolidinothietane 1,1-dioxide (13a) was prepared as described⁹ from phenylmethanesulfonyl chloride (1.0g, 5.2 mmol), 7 (0.7 g, 5.6 mmol), and NEt_3 (0.8 g, 7.9 mmol) in benzene (100 mL) at 0 °C, in 68% yield: mp 160 °C (lit.⁹ mp 161 °C); IR ν_{max} 1103, 1294, cm⁻¹; ¹H NMR δ 1.62 (s, 3H), 1.69 (s, 3H), 1.7 (t, 4H), 2.31 (t, 4H), 3.03 (d, 1H), 5.15 (d, 1H), 7.36–7.45 (m, 5H); $^{13}\mathrm{C}$ NMR 8 17.7, 21.9, 23.2, 53.9, 66.3, 76.7, 81.0, 128.7, 129.0, 129.2, 129.7.

Kinetics. The pH-stat apparatus and general procedure have been described.¹⁹ (a) Hydrolysis. The initial concentrations of the (trimethylsilyl)methanesulfonyl chloride varied from 4.4 \times 10⁻⁴ to 5.5 \times 10⁻⁴ M (added in DME) in 50 mL of 0.01 M aqueous KCl at 1.0 °C, with the reaction followed by titration with NaOH (0.1 M). The temperature was maintained by an external circulating cooler, Gebrüder Haake K.G. KT₆₂, filled with ethanol/water (1:1 in vol). The k_w (2.1 × 10⁻² s⁻¹) was obtained from the mean of $k_{\rm obsd}$ values at pH 4–8 and $k_{\rm OH}$ (1.7 imes 10³ M⁻¹ s⁻¹) from $k_{OH} = (k_{obsd} - k_w)$ [H⁺]/ K_w using k_{obsd} values at pH 10 and 10.5 with K_w 1.34 × 10⁻¹⁵. The rate constants k_{SOH} and k_{EOH} are calculated from the equations $k_{OH} = k_{SOH} + k_{EOH}$ and [3]/[6] = $(k_w + k_{SOH}[OH^-])/k_{EOH}[OH^-]$, where the product ratio was determined as described below. (b) With Added Nucleophiles. (i) Amines. The conjugate base concentration was calculated from $[NR_3] = [NR_3]_T/(1 + [H^+]/K_a)$, where $K_a = [H^+][NR_3]/(1 + [H^+]/K_a)$ $[HNR_3^+]$ and $[NR_3]_T = [NR_3] + [HNR_3^+]$; the rate constant k_N is calculated from $k_{\rm N} = (k_{\rm obsd(N)} - k_{\rm obsd(w)})/[\rm NR_3]$, where $k_{\rm obsd(N)}$ = $k_{w} + k_{OH}[OH^{-}] + k_{N}[NR_{3}]$ and $k_{obsd(w)} = k_{w} + k_{OH}[OH^{-}]$. (ii) Potassium Fluoride. The rate constant was calculated from $k_{\rm N} = (k_{\rm obsd(N)} - k_{\rm obsd(w)})/[F^-]$. The reactions were followed by titration with NaOH (0.1 M) and the end point determined from the infinity titre.

Deuterium Substitution Experiments. Hydrolysis. (a) $Me_3SiCH_2SO_2Cl$ (70 μ L) was injected into DCl in D₂O (8 mL, pD) 3.5). The mixture was stirred for 30 min and extracted with $CDCl_3$ (1 mL). The $CDCl_3$ extract was pipetted and eluted through a small column of $MgSO_4$ into an NMR tube. NMR spectra showed the presence of 2: ¹H NMR δ 0.04 (s); ¹³C NMR δ 2.0. The aqueous portion was washed (CH₂Cl₂) and evaporated to give 3: ¹H NMR δ 2.83 (1:1:1 t, J = 2 Hz); ¹³C NMR δ 40.9 (1:1:1 t, J = 21 Hz) (est. >99% mono α -D). (b) Me₃SiCH₂SO₂Cl (70 $\mu L)$ was injected into NaOD in D_2O (8 mL, pD 11.4). The mixture was stirred for 30 min and after the usual workup gave the following: (i) organic extract 2 [¹H NMR δ 0.05; ¹³C NMR δ 2.1] and (ii) aqueous layer, a mixture of CH₂DSO₃- and $Me_3SiCHDSO_3^-$ (¹H NMR showed the ratio to be 15:9). CH_2DSO_3 -: ¹H NMR δ 2.79 (1:1:1 t, J = 2 Hz); ¹³C NMR δ 40.9 (1:1:1 t, J = 21 Hz) (est. >99% mono α -D). Me₃SiCHDSO₃-: ¹H NMR δ 0.15 (s, 9H), 2.65 (1:1:1 t, J = 2 Hz); ¹³C NMR δ 0.5, 45.2 (1:1:1 t, J = 19 Hz) (est. >99% mono α -D).

Product Analyses. (a) (Trimethylsilyl)methanesulfonyl Chloride (1) with Water. A solution of 1 (0.1 g, 1.1×10^{-3} M) in DME (0.5 mL) was injected into H₂O (500 mL, adjusted to pH 11 with NaOH) maintained by pH-stat (0.01 M NaOH) with stirring at 1 °C and stirring continued for 30 min. The mixture was washed with CH₂Cl₂ and the water evaporated to give a mixture of CH₃SO₃⁻ and Me₃SiCH₂SO₃⁻ (ratio 69:31 by ¹H NMR). CH₃SO₃⁻ (3): ¹H NMR δ 2.81 (s); ¹³C NMR δ 41.1. Me₃SiCH₂SO₃⁻ (6): ¹H NMR δ 0.15 (s, 9H), 2.67 (s, 2H); ¹³C NMR δ 0.5, 45.5. Similarly reacted were (i) 1 (0.2 g, 2.2 × 10⁻³ M) at pH 11, as above, giving a 70:30 mixture of CH₃SO₃⁻ and Me₃SiCH₂SO₃⁻; (ii) 1 (0.15 g, 1.65 × 10⁻³ M) at pH 10 giving a 78:22 mixture of $CH_3SO_3^{-}$ and $Me_3SiCH_2SO_3^{-}$; and (iii) 1 (0.1 g, 5×10^{-4} M) at pH 6 to give only $CH_3SO_3^{-}$ with no sign of any $Me_3SiCH_2SO_3^{-}$.

(b) (Trimethylsilyl)methanesulfonyl Chloride (1) with Water and Aniline. A solution of 1 (0.2 g, 5.4×10^{-4} M) in DME (0.5 mL) was injected into a stirred solution of PhNH₂ (4 mL, 0.02 M) and H₂O (2000 mL, pH 8, maintained by pH-stat) and stirring continued for 30 min. The reaction mixture was extracted with CH₂Cl₂. The organic extract was washed (aqueous HCl), dried (MgSO₄), and evaporated to give methanesulfonanilide (CH₃SO₂NHPh) (11.5 mg, 6.3% yield) as a brown oil: ¹H NMR δ 3.0 (s, 3H), 6.8 (broad, H, NH), 7.2-7.4 (m, 5H); ¹³C NMR δ 39.3, 120.8, 125.5, 129.7, 136.7 (identical to those of an authentic speciment prepared from MeSO₂Cl, Et₃N, and PhNH₂ in CH₂Cl₂; the spectra showed no sign (<1%) of any Me₃SiCH₂SO₂NHPh. The aqueous portion was evaporated to give CH₃SO₃-: ¹H NMR δ 2.82; ¹³C NMR δ 41.1, with no sign (<1%) of any Me₃SiCH₂SO₃⁻. The sulfene trapping ratio for aniline vs water is given by $k_{\rm TN}$ $k_{\rm TW} = 6.3/(93.7 \times 0.02) = 3.4 {\rm M}^{-1}.$

(c) (Trimethylsilyl)methanesulfonyl Chloride (1) with Water and Triethylamine. A solution of 1 (0.1 g, 5.4×10^{-4} mol) in DME (0.5 mL) was injected into a stirred solution of triethylamine (5.6 mL, $[Et_3N]_T = 0.04$ M, $[Et_3N] = 2.05 \times 10^{-5}$ M) and H₂O (1000 mL, set at pH 8 with HCl) maintained by pH-stat (0.1 M NaOH) and stirring continued for 30 min. NaOH pellets (1.6 g) were added to neutralize the reaction mixture, and the water was evaporated. The residue was extracted with ethanol and the solvent evaporated to give CH₃SO₃⁻: ¹H NMR δ 2.81; ¹³C NMR δ 41.1 with no sign (<1%) of any Me₃SiCH₂SO₃⁻.

(d) (Trimethylsilyl)methanesulfonyl Chloride (1) with Water and Fluoride Anion. (i) Nonpolar Products. A solution of 1 (0.2 g, 2.4×10^{-3} M) and aqueous KF (0.01 M, 450 mL) in a 500-mL round-bottomed flask connected to a 5-mL round-bottomed flask containing CDCl₃ (2 mL) was stirred at 0 °C for 25 min whereupon the two liquids were shaken together. The organic layer was pipetted out and eluted through a small column of MgSO₄ into an NMR tube. The ¹H NMR spectrum showed the sample to contain a mixture of Me₃SiOSiMe₃, Me₃SiF (ratio 1:3), and CH₃SO₂F (<1%). Me₃SiOSiMe₃: ¹H NMR δ 0.04; ¹³C NMR δ 1.9. Me₃SiF: ¹H NMR δ 0.21 (d, J = 7.5 Hz); ¹³C NMR δ 0.1 (d, J = 15 Hz). CH₃SO₂F: ¹H NMR δ 3.26 (d, J = 5 Hz) (est. <1%). (ii) Ionic Products. A solution of 1 (0.2 g, 2.1×10^{-3} M) in DME (1 mL) was injected into a stirred solution of KF (0.01 M, 500 mL, set at pH 11 with NaOH) maintained by pH-stat (0.1 M NaOH) at 1 °C and stirring continued for 30 min; the usual workup gave a mixture of CH₃SO₃- and Me₃-SiCH₂SO₃- (ratio 99.7: 0.3 from ¹H NMR). CH₃SO₃-: ¹H NMR δ 2.82; ¹³C NMR δ 41.1. Me₃SiCH₂SO₃-: ¹H NMR δ 0.15 (s, 9H), 2.72 (s, 2H).

Reaction of Alkanesulfonyl Chlorides with 1-(2-Methylpropenyl)pyrrolidine (7) in Aqueous Solution. (a) Methanesulfonyl Chloride. Solutions of 7 (0.65 g, 5.2 mmol) in DME (5 mL) and aqueous NaOH (40 mL, pH 9) were added simultaneously to a stirred solution of CH₃SO₂Cl (0.24 g, 2.1 mmol) in DME (5 mL) and stirring continued for 10 min. The reaction mixture was acidified (aqueous H_2SO_4) and extracted (CH_2Cl_2 , 50 mL). The organic extract was dried (MgSO₄) and evaporated to give a mixture (0.15 g) of 10 and 9 (¹H NMR showed the ratio 2:1) as a yellow oil. (i) 10 (0.10 g, 32% yield): ¹H NMR δ 1.95 (t, 4H), 2.8 (s, 3H), 3.33 (t, 4H); ¹³C NMR δ 25.6, 34.4, 47.8. (ii) 9 (0.05 g, 16% yield): ¹H NMR δ 1.60 (s, 6H), 2.8 (s, 3H), 9.72 (s, 1H); 13 C NMR δ 16.2, 36.8, 69.3, 197.3. The aqueous portion was basified (aqueous NaOH) and extracted with CH₂Cl₂. The organic extract was dried (MgSO₄) and evaporated to give 8 (0.17 g, 40% yield), with ¹h NMR and ¹³C NMR spectra identical to those of the authentic specimen. The mixture of 10 and 9 in methanol (1 mL) was added to a solution of 2,4-dinitrophenylhydrazine (0.1 g, 0.5 mmol) and concd HCl (seven drops) in methanol (10 mL) and the mixture set on the steam bath for 2 min, allowed to stand at room temperature for 15 min, and cooled in an ice bath. The precipitate was filtered, washed (cold methanol), and dried (air) to give the 2,4-dinitrophenylhydrazone as orange-red crystals: mp 187–188 °C; IR ν_{max} 1080, 1289, 1333, 1518, 1619, 3272 cm⁻¹; ¹H NMR δ 1.72 (s, 6H), 2.89 (s, 3H), 7.63 (s, HC=N), 7.90 (d, 1H), 8.36 (d, 1H), 9.14 (s, 1H), 11.27 (broad, NH); ¹³C NMR δ 19.1, 35.5, 64.6, 116.4, 123.3, 129.8, 130.1, 138.8, 144.5, 147.7; exact mass (M + 1) calcd 331.0712, found 331.0711

⁽¹⁸⁾ Dittmer, D. C.; Davis, F. A. J. Org. Chem. 1964, 29, 3131-3132.
(19) King, J. F.; Hillhouse, J. H.; Skonieczny, S. Can. J. Chem. 1984, 62, 1977-1995.

(CI, isobutane). Reactions with other sulfonyl chlorides were carried out similarly. (b) 2-Propanesulfonyl chloride (0.52 g, 4.2 mmol), 7 (0.65 g, 5.2 mmol) in DME (5 mL), and aqueous NaOH (40 mL, pH 10.5) gave 13b (0.03 g, 6%) and (2-propanesulfonyl)pyrrolidide (0.11 g, 31% yield) (each with ¹H and ¹³C NMR spectra identical to those of the authentic specimens) and 14b (0.11 g, 28% yield): 1H NMR 8 1.33 (d, 6H), 1.55 (s, 6H), 3.40 (septet, 1H), 9.77 (s, 1H); ¹³C NMR δ 15.8, 16.6, 51.7, 69.5, 197.5; exact mass (M + 1) calcd for C₇H₁₄SO₃ 179.0742, found 179.0750 (CI, isobutane). The aldehyde (14b) was converted to the 2,4-dinitrophenylhydrazone: mp 178 °C; IR ν_{max} 1080, 1298, 1335, 1516, 1619, 3276 cm⁻¹; ¹H NMR δ 1.38 (d, 6H), 1.72 (s, 6H), 3.43 (septet, 1H), 7.66 (s, HC=N), 7.91 (d, 1H), 8.37 (d, 1H), 9.15 (s, 1H), 11.22 (broad, 1H); ¹³C NMR & 16.8, 19.8, 50.9, 65.6, 116.3, 123.3, 129.8, 130.1, 138.7, 144.6, 149.0; exact mass (M + 1) calcd for $C_{13}H_{18}N_4O_6S$ 359.1025, found 359.1020 (CI, isobutane). (c) Phenylmethanesulfonyl chloride (0.3 g, 1.6 mmol), 7 (0.4 g, 3.2 mmol) in DME (5 mL), and aqueous NaOH (40 mL, pH 8) gave 13a (0.26 g, 59% yield) and (phenylmethanesulfonyl)pyrrolidide (0.01 g, 3% yield), both with ¹H and ¹³C NMR spectra identical to those of the authentic specimens, and 14a (plus a roughly equal amount of an unidentified material) (0.08 g, total 20% yield): ¹H NMR § 1.57 (s, 6H), 4.22 (s, 2H), 7.38 (m, 5H), 9.50 (s, 1H); 13 C NMR δ 16.4, 55.9, 70.1, 128.9, 129.3, 131.3, 196.0. 14a was converted to the 2,4-dinitrophenylhydrazone: mp 115-116 °C; IR ν_{max} 1113, 1306, 1333, 1516, 1619, 3297 cm⁻¹; ¹H NMR δ 1.72 (s, 6H), 4.32 (s, 2H), 7.21-7.32 (m, 3H), 7.35-7.41 (m, 2H), 7.43 (s, HC=N), 7.85 (d, 1H), 8.33 (d, 1H), 9.07 (s, 1H), 10.93 (broad, 1H); ¹³C NMR δ 19.2, 55.0, 65.7, 116.4, 123.1, 126.7, 128.6, 129.5, 129.9, 131.0, 138.5, 144.4, 147.6, 147.8; exact mass (M + 1) calcd for $C_{17}H_{18}N_4O_6S$ 407.1025, found 407.1020 (CI, isobutane).

Reaction of Alkanesulfonyl Chlorides with 1-(N-Pyrrolidino)cyclohexene in Aqueous Solution. (a) Methanesulfonyl Chloride. Solutions of 1-(N-pyrrolidino)cyclohexene (2.6 g, 17.2 mmol) in DME (5 mL) and of aqueous NaOH (40 mL, pH 9) were added simultaneously to a stirred solution of CH₃SO₂Cl (1.0g, 8.7 mmol) in DME (5 mL) and stirring continued for 10 min. The reaction mixture was acidified (aqueous H_2SO_4) and extracted with CH_2Cl_2 (50 mL). The two layers were treated as follows: (i) The aqueous portion was basified (aqueous NaOH) and extracted with CH_2Cl_2 ; the organic extract was dried (MgSO₄) and evaporated to give 15 (0.2 g, 10% yield). (ii) The organic layer was extracted with aqueous NaOH (5%) and then dried $(MgSO_4)$ and evaporated to give 10 (0.3 g, 23% yield); the basic aqueous extract was then acidified with dilute HCl and extracted with CH_2Cl_2 . The organic extract was dried (MgSO₄) and evaporated to give 16a (0.4 g, 26% yield): mp 56-57 °C (95% ethanol) (lit.²⁰ mp 57-58 °C); IR ν_{max} 1125, 1304, 1716 cm⁻¹; ¹H NMR & 1.6-2.1 (m, 4H), 2.3-2.5 (m, 3H), 2.6-2.7 (m, 1H), 2.97 (s, 3H), 3.73 (dd, 1H); ¹³C NMR δ 22.4, 25.79, 25.82, 40.6, 41.5, 70.4, 203.2; exact mass calcd for $C_7H_{12}O_3S$ 176.0507, found

(20) Truce, W. E.; Knospe, R. H. J. Am. Chem. Soc. 1955, 77, 5063-5067.

176.0500. Both 15 and 10 showed ¹H NMR and ¹³C NMR identical to those of the authentic specimens. (b) Phenylmethanesulfonyl chloride (0.7 g, 3.7 mmol), 1-(N-pyrrolidino)cyclohexene (1.1 g, 7.3 mmol) and aqueous NaOH (pH 8, 40 mL) were treated similarly to give 16b (0.36 g, 39% yield) as the only extractable product: mp 101-102 °C (methanol) (lit.¹⁶ mp 98-100 °C); IR v_{max} 1121, 1312, 1713 cm⁻¹; ¹H NMR § 1.60-2.46 (m, 7H), 2.7 (m, 1H), 3.61 (t, 1H), 4.29, 4.43 (AB quartet, 2H, J =13.8 Hz), 7.39 (m, 5H); ¹³C NMR 8 22.0, 24.8, 25.5, 41.3, 59.0, 66.1, 127.5, 128.7, 128.8, 130.8, 203.5; exact mass calcd for C₁₃H₁₆SO₃ 252.0820; found 252.0828. 16b was converted to the 2,4-dinitrophenylhydrazone: mp 221-222 °C (methanol) (lit.¹⁶ mp 219-220 °C); IR v_{max} 1121, 1341, 1516, 1619, 3322 cm⁻¹; ¹H NMR 8 1.49-2.16 (m, 5H), 2.65-2.90 (m, 3H), 4.04 (m, 1H), 4.24, 4.47 (AB quartet, 2H, J = 14 Hz), 7.43 (s, 5H), 7.98 (d, 1H), 8.42 (d, 1H), 9.18 (s, 1H), 11.41 (s, NH); ¹³C NMR δ 21.3, 24.6, 25.2, 25.4, 57.7, 63.0, 115.9, 123.6, 127.7, 129.0, 129.2, 130.0, 130.3, 131.0, 138.7, 144.7, 153.5.

(Trimethylsilyl)methanesulfonyl Chloride with 1-(2-Methylpropenyl)pyrrolidine (7). (a) Aqueous Solution at pH 8. Solutions of 7 (0.65 g, 5.2 mmol) in DME (5 mL) and aqueous NaOH (40 mL, pH 8) were added simultaneously to a stirred solution of 1 (0.4 g, 2.1 mmol) in DME (5 mL) and stirring continued for 10 min. The reaction mixture was acidified (aqueous H_2SO_4) and extracted (CH₂Cl₂, 50 mL). The organic extract was dried (MgSO4) and evaporated to give a mixture (0.07 g) of 10 and 9 as a yellow oil. 10 (11% yield): ¹H NMR δ 1.95 (t, 4H), 2.8 (s, 3H), 3.33 (t, 4H); ¹³C NMR δ 25.7, 34.4, 47.8. 9 (23% yield): ¹H NMR δ 1.60 (s, 6H), 2.8 (s, 3H), 9.72 (s, 1H); ¹³C NMR δ 16.2, 36.8, 69.3, 197.3. The aqueous portion was basified with aqueous NaOH and extracted with CH₂Cl₂. The organic extract was dried (MgSO4) and evaporated to give 8 (0.16 g, 39% yield): ¹H NMR δ 1.52 (s, 3H), 1.57 (s, 3H), 1.80 (t, 4H), 2.44 (m, 4H), 2.79 (t, 1H), 3.90 (d, 2H); 13 C NMR δ 17.2, 21.8, 23.3, 53.4, 59.2, 64.6, 80.4. (b) Aqueous KF, pH 9. Solutions of 7 (0.65 g, 5.2 mmol) in DME (5 mL) and aqueous KF (30 mL, 0.1 M, pH 9) were added simultaneously to a stirred solution of 1 (0.4 g, 2 mmol) in DME (5 mL) and stirring continued for 10 min; the usual workup gave 10 (28% yield), 9 (9% yield), and 8 (46% yield), with ¹H NMR identical to those described above.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support in the form of Postgraduate Fellowships (to J.Y.L.L.) and Operating Grants.

Supplementary Material Available: NMR spectra (1 H and/or 13 C) for new compounds (29 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.